Also Included In: Genetics; Endocrinology
Article Date: 08 Dec 2011 - 0:00 PST
email to a friend
printer friendly
opinions
After a four-week course of the vasodilator hormone relaxin, kidney function and blood flow immediately improved in lab rats genetically altered to model polycystic kidney disease (PKD), a life-threatening genetic disorder, according to research presented at the American Society for Cell Biology Annual Meeting in Denver.
In addition to widening the blood vessels, relaxin lowered the collagen scores of the PKD rats, indicating that the drug had slowed scar formation or helped dissolve the old fibroid tissue that characterizes the kidneys of animals and humans with the disease, according to Heather Ward, Ph.D., and Angela Wandinger-Ness, Ph.D., of the University of New Mexico and collaborators.
PKD is a life-threatening genetic disorder that affects 600,000 Americans, according to the National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK). About 50% of individuals diagnosed with PKD develop end-stage renal disease by age 60.
The researchers also noted that in rats, relaxin reduced the size of the large fluid-filled cysts that gradually encroach on kidney function in human PKD patients.
PKD was the first disease to be recognized as a ciliopathy, a disorder characterized by defects in primary cilia, tiny hair-like structures that protrude from virtually every cell in the human body.
In the search of effective treatments, most PKD researchers have concentrated on halting or reversing PKD's characteristic cyst formation.
Ward and her colleagues instead examined the non-cystic aspects of PKD progression, particularly the poor blood flow and extensive internal scarring called fibrosis that encroaches on the glomeruli, the vital clusters of looping blood vessels that filter wastes and excess water from the blood.
They decided to evaluate relaxin because the hormone is a powerful vasodilator. It was first identified in pregnant women but also occurs in men.
Prompted by the hormone's positive effects on the PKD animals, Ward and colleagues explored the differences in kidney gene expression between relaxin and control-treated rats. The results of the gene expression analysis suggested that relaxin, in part, affects genes associated with epithelial trafficking.
The researchers said that they hypothesize that relaxin's direct effect on signaling pathways of kidney fibroblasts and vascular cells improves the renal environment, indirectly affecting cystic epithelia and slowing cyst growth.
Article adapted by Medical News Today from original press release. Click 'references' tab above for source.Visit our urology / nephrology section for the latest news on this subject. Please use one of the following formats to cite this article in your essay, paper or report:
MLA
8 Dec. 2011.
Please note: If no author information is provided, the source is cited instead.
Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.
If you write about specific medications or operations, please do not name health care professionals by name.
All opinions are moderated before being included (to stop spam)
Contact Our News Editors
For any corrections of factual information, or to contact the editors please use our feedback form.
Please send any medical news or health news press releases to:
Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.