duminică, 5 august 2012

Researchers Develop First Potential Medicine For Patients With Most Severe Form Of Congenital Hyperinsulinism

dj nunta | dj botez | Birou notarial | Baloane | Aranjamente Baloane | aranjamente florale | flori nunta | flori botez | Pret Aparat Dentar | Aparat Dentar Invizibil | instrumentar | biomateriale | stomatologie
Main Category: Diabetes
Also Included In: Pediatrics / Children's Health;  Genetics
Article Date: 04 Aug 2012 - 0:00 PDT Current ratings for:
Researchers Develop First Potential Medicine For Patients With Most Severe Form Of Congenital Hyperinsulinism
not yet ratednot yet rated
A pilot study in adolescents and adults has found that an investigational drug shows promise as the first potential medical treatment for children with the severest type of congenital hyperinsulinism, a rare but potentially devastating disease in which gene mutations cause insulin levels to become dangerously high.

"There is currently no effective medicine for children with the most common and most severe form of hyperinsulinism," said study leader Diva D. De Leon, M.D., a pediatric endocrinologist at The Children's Hospital of Philadelphia. "Our new research shows that this investigational drug, a peptide called exendin-(9-39), controls blood sugar levels in people, a very promising result."

The study appears online ahead of print in the journal Diabetes.

In congenital hyperinsulinism (HI), mutations disrupt the insulin-secreting beta cells in the pancreas. Uncontrolled, excessive insulin levels thus sharply reduce blood glucose levels, a condition called hypoglycemia. If untreated, hypoglycemia may cause irreversible brain damage or death in children. Congenital HI occurs in an estimated one in 50,000 U.S. children, with a higher incidence among Ashkenazic Jews and certain other groups.

The standard treatment for some forms of congenital HI is diazoxide, a drug that controls insulin secretion by opening potassium channels in beta cells. However, this drug does not work in the most common types of HI, in which mutations prevent these potassium channels from forming.

When abnormal beta cells occur only in a discrete portion of the pancreas, precise surgery on the tiny organ can remove the lesion and cure HI. The Congenital Hyperinsulinism Center at The Children's Hospital of Philadelphia is a world leader in diagnosing such lesions and performing the curative surgery on newborns.

However, in roughly half of congenital HI cases, abnormal cells are diffused through the pancreas, and surgeons must remove nearly the entire pancreas. This leaves the majority of patients at high risk of developing diabetes.

The current study, which builds on previous research by De Leon and colleagues in animals, uses exendin-(9-39), which blocks the action of a hormone receptor, glucagon-like peptide-1 (GLP-1), in beta cells. The GLP-1 receptor is currently the target of drugs that treat diabetes, using the opposite effect from that investigated in this HI study.

The current pilot study included nine subjects, aged 15 to 47 years old, who had hyperinsulinism caused by mutations in potassium channels. None were being treated for HI at the time of the study, but all were at risk of hypoglycemia during periods of fasting.

In all nine subjects, the drug controlled blood glucose levels during fasting. Exendin also controlled insulin secretion in cell studies of beta cells taken from newborns with HI. The current research did not focus on the biological mechanisms that occurred, but De Leon said the results are encouraging enough to progress to a clinical study in children with HI over the next year.

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our diabetes section for the latest news on this subject. Financial support for this study came from the National Institutes of Health (grant 1R03DK07835), the Lester and Liesel Baker Foundation, and the Clifford and Katherine Goldsmith Foundation. De Leon's co-authors, all from Children's Hospital, were Charles A. Stanley, M.D., Andrew C. Calabria, M.D., Changhong Li, M.D., and Paul R. Gallagher In addition to their positions at Children's Hospital, De Leon, Stanley and Li also are in the Perelman School of Medicine at the University of Pennsylvania.
"The GLP-1 Receptor Antagonist Exendin-(9-39) Elevates Blood Fasting Glucose Levels in Congenital Hyperinsulinism due to Inactivating Mutations in the ATP-sensitive Potassium Channel," Diabetes, published online Aug.1, 2012, to appear in print, October 2012. doi: 10.2337/db12-0166.
Children's Hospital of Philadelphia Please use one of the following formats to cite this article in your essay, paper or report:

MLA

n.p. "Researchers Develop First Potential Medicine For Patients With Most Severe Form Of Congenital Hyperinsulinism." Medical News Today. MediLexicon, Intl., 4 Aug. 2012. Web.
5 Aug. 2012. APA

Please note: If no author information is provided, the source is cited instead.


'Researchers Develop First Potential Medicine For Patients With Most Severe Form Of Congenital Hyperinsulinism'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



dj nunta | dj botez | Birou notarial | Baloane | Aranjamente Baloane | aranjamente florale | flori nunta | flori botez | Pret Aparat Dentar | Aparat Dentar Invizibil | instrumentar | biomateriale | stomatologie